Deposition of micron liquid droplets on wall in impinging turbulent air jet

نویسندگان

  • Tianshu Liu
  • Jacob Nink
  • Parviz Merati
  • Tian Tian
  • Yong Li
چکیده

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract The fluid mechanics of deposition of micron liquid (olive oil) droplets on a glass wall in an impinging turbulent air jet is studied experimentally. The spatial patterns of droplets deposited on a wall are measured by using luminescent oil visualization technique, and the statistical data of deposited droplets are obtained through microscopic imagery. Two distinct rings of droplets deposited on a wall are found, and the mechanisms of the formation of the inner and outer rings are investigated based on global diagnostics of velocity and skin friction fields. In particular, the intriguing effects of turbulence, including large-scale coherent vortices and small-scale random turbulence, on micron droplet deposition on a wall and coalescence in the air are explored.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model

Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...

متن کامل

Numerical simulation of liquid-layer breakup on a moving wall due to an impinging jet

Jet-wiping is a hydrodynamic method for controlling the liquid film thickness in a coating process. In industrial conditions, the jet is generally turbulent. When the jet wipes a liquid film, it usually induces violent film instability called splashing. The instability is characterized by the ejection of droplets from the runback flow. Consequently, it can degrade the final coating quality sinc...

متن کامل

and Surface Disturbance Evolution on Turbulent Liquid Jets in Gases

Splattering of droplets during liquid jet impingement on solid targets alters the efficiencies of jet impingement heat transfer processes and chemical containment safety devices, and leads to problems of aerosol formation in jet impingement cleaning processes. A study of the turbulent liquid jet impingement splattering, the evolution of the disturbances on the free surface of a turbulent liquid...

متن کامل

Heat Transfer under Double Turbulent Pulsating Jets Impinging on a Flat Surface

In this study, the numerical analysis of turbulent flow and heat transfer of double pulsating impinging jets on a flat surface has been investigated. The unsteady two-dimensional numerical solution for two similar and dissimilar jets was performed using the RNG k-ε model. The results showed that the RNG k-ε model has more satisfactory predictions of the Nusselt number distribution. Comparisons ...

متن کامل

Cfd Simulation of round Impinging Jet and Comparison with Experimental Data

In this work, fluid dynamics of a turbulent round impinging jet has been studied using Computational Fluid Dynamics (CFD) and the results have been compared with experimental data from the literature. The fluid was water with density of 1000 kg/m 3 and the average velocity of the submerged jet was kept constant at 10.7 m/s while the liquid viscosity varied from 1 cP to 100 cP. Different turbule...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009